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Abstract: Anionic species formed by treatment of vinyl sulfones with hydridoaluminates were trapped intramolecularly 
by esters to provide six- and seven-membered cyclic ketosulfones, exemplified by the stereoselective construction of 
rruns-hydrindanes and of perhydmazulenes. This led to formal syntheses of confertin and damsinic acid. 

Annelations occupy a central role in molecular construction,t and new methods which lead to synthetically 
versatile functional arrays are particularly valuable.2 In an exploitation of conjugate additions of nucleophiles 
to vinyl sulfones,3 intermediate sulfone-stabilised anions formed by use of carbon nucleophiles have been 
trapped intramolecularly by alkyl halides to form cyclopentane4 and cyclohexane5 rings. We now report that 
six and seven membered carbocyclic rings may be constructed by intramolecular acylation (by esters) of 
intermediate anionic species formed by reaction of vinyl sulfones with hydridoaluminates. The products are 
synthetically versatile P-ketosulfones. The reduction of vinyl sulfones to saturated sulfones by complex 
hydrides is well established.6 but the trapping of intermediate anionic species by carbon eiectrophiles has not 
been described previously. 

The reactions were developed during an investigation of stereoselective routes to pseudoguaianolides of 
the ambrosanolide family,7 such as damsinic acid (1) and confertin (2), and other perhydroazulene derivatives 
such as Reiswigin A (3), which shows potent anti viral activity. 8 For other syntheses, routes to trans- 
hydrindane derivatives were also required. These routes commenced with the construction of cyclopentanone 
derivatives (4)-(8) by a method based on the work of Haynes et.al. (Scheme 1).9> 10 

(8) R’=Me,R2=H 

Scheme 1. i, a, BuLi-THF, -78 + 0 “C, b, 2-cyclopentenone or 2-methyl-2-cyclopentenone, 1 min.: 
ii, NCCO*Me (for R’ = I-l) -78’C; iii, a, F’h,SnCl (1.5 equiv.) 30 min., b, ICH,C02Et (3 equiv.) 18h:. 
Yields from 2-cyclopentenone or 2-methyl-2-cycIopentenone:- (4) (60%); (5) (50%); (6) (73%); (7) (61%); (8) (55%). 
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The trans orientation about C-l - C-5 (pseudoguaianolide numbering) in (4)-(g) is a consequence of 1,2- 
asymmetric induction,ll and the highly stereoselective formation of the chiral centre at C-10 in (6) and (8) is a 
feature of Michael additions of ally1 sulfone lithio anions to cyclopentenones.9 The ketones (4)-(g) were 
subsequently converted into their derivatives (9)-(13) respectively by routine proceduresl*J3 

(9) R = Me 
(10) R=H 

LiAI(Bu’)nBuH 

(11) R=Me 
(12) R= H 

I 
LiAI(Bu’)zBuH 

L&$-$02Ar &SOzAr 

0 MOM0 

(14) R = Me (16) R=Me 
(15) R = H (17) R=H 

~(19) R= Me 
(20) R = H 

(13) 

I LiAI(Bu’)nBuH 

+ 

Treatment of (9) with lithium butyldi-isobutylhydridoaluminatet4 in hexane-THF for 15 minutes at room 
temperature gave the ketosulfone (14) (95%).15 Similar treatment of (10) gave the ketosulfone (15) almost 
quantitatively (NMR), but the unoptimized yield of analytically pure material was moderate (46%) because of 
chromatographic difficulties associated with its insolubility. Clearly, anionic species generated by conjugate 
addition of hydride to the vinyl sulfone readily underwent intramolecular acylation, and reduction of the ester 
did not compete. The precise nature of the anionic species is not clear, but we tentatively formulate them in 
the ylidic form (22) in view of the known propensity of aluminium-derived Lewis acids to complex with 
sulfonyl oxygen.16 

AIR3 

oc&Ar MoM$&S02Ar MoM@yr 

t 
(22) (23) (24) 

The formation of seven-membered rings by this method was less efficient, because reduction of the ester 
competed with intramolecular acylation. Nevertheless, cyclization still proceeded in synthetically useful 
yields. Treatment of (1 l), (12), and (13) with lithium butyldi-isobutylhydridoaluminate in the above manner 
gave respectively the ketosulfones (16) (58%), (17) (61%) and (18) (53%) together with the corresponding 
hydroxysulfones (19) (240/c), (20) (37%), and (21) (37%) from which they were readily separated by 
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chromatography. In contrast to the completely stereoselective formation of (14) and (15), the ketosulfones 
( 16)-( 18) were obtained as a 2: 1 mixture of epimers at C-8 according to NMR. 

Lithium butyldi-isobutylhydridoaluminate emerged as the best reagent to effect clean cyclization after a 
study of the behaviour of (11) with a number of hydridoaluminates. With lithium aluminium hydride in ether 
at O°C for 20 minutes, (11) gave (16) (15%), (19) (46%) and the cyclic hydroxy sulfone (23) (25%). The 
hydroxy sulfone (23) was not formed when LiAl(OMe)sH, LiAl(OMe)zHz, or LiAl(OEt)zHz were used, in 
THF, the sole cyclic product being the ketosulfone (16) (40-56%), which was, however, accompanied by 
unidentified by-products from which it was difficult to separate. With LiAl(OBut)sH in boiling ether for 24 h 
the only product (24) (85%) was that of conjugate reduction of the vinyl sulfone. 

These remarkably easy cyclizations led to formal syntheses of damsinic acid (1) and confertin (2), reported 
total syntheses of which involve the key intermediates (25)” and (28)1* respectively. These ketones were 
prepared from (16) by straightforward transformations (Scheme 2), which included the completely 
stereoselective reduction of the vinyl sulfone (26), and the oxidation t9 of the derived sulfone (27) by treatment 
in sequence with lithium di-isopropylamide and oxodiperoxymolybdenum(pyridine)(N,N-dimethyl-3,4,5,6- 
tetrahydropyrimidinone (MoOPD).zo 

MoM+S02Ar kMoM$SOzAr 5 H+O 

(26) (27) (28) 

Scheme 2. Reagents: i, a, 6% N&g, NaH2P04, MeOH ; b, HCl, MeOH ; c, CH,=CMq, H+ ; ii, NaBbh; iii CH,S02CI, 

pyridine, DBU; iv, LiAIH.,:; v, a, LDA, MoOPD.; b, HCl, MeOH. 

The usefulness of this new method of constructing cyclic ketosulfones was further demonstrated by 
transformations which we are currently exploiting for a synthesis of Reiswigin A (3) (Scheme 3). These 
reactions, which included the slow (96h) but efficient reduction of the epoxysulfone (29) by Kocienski’s 
method,21 all proceeded with complete stereoselectivity. 

(29) 

Scheme 3 Reagents: i, a, NaH - MeI; b, LiAIH4; c, SOClz - pyridine: 
ii, MCPBA; iii, 6% Na/Hg - THF - MeOH; iv, BaMnO,. 

The scope and limitations of this new mode of cyclization, together with precise details of its mechanism, 
remain to be clarified, but we consider it provides a useful way of making hydrindane and perhydroazulene 
derivatives. 
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